testpapers.co.za

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2016 GRADE 10

MATHEMATICS (PAPER 2)

MEMORANDUM

7 pages

Mathematics (P2) Grade 10

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (P2)

MEMORANDUM

	QUESTION 1		
1.1	$\frac{\sin\theta}{\cos\theta} = \frac{y}{r} \div \frac{x}{r}$, y	
	$=\frac{y}{x} \times \frac{r}{r}$	$\sqrt{\frac{y}{r}}$ $\sqrt{\frac{x}{r}}$	
	$\begin{pmatrix} r & x \\ = \frac{y}{} \end{pmatrix}$	$\begin{array}{c c} \checkmark & - \\ r \\ \checkmark \text{simplification} \end{array}$	
	X	(3) Answer only 1/3	
1.2.1	$\sin \theta = \frac{PQ}{PR} = \frac{5}{13}$	✓answer	
		(1)	
1.2.2	$\sec \theta = \frac{PR}{QR} = \frac{13}{12}$	✓answer	
		(1)	
1.2.3	$\tan \theta = \frac{PQ}{QR} = \frac{5}{12}$	✓answer	
		(1)	
			[6]

	QUESTION 2		
2.1	φ x 5 P(4; -3)	✓ correct quadrant	
	$4 \tan \theta = -3$ $\therefore \tan \theta = -\frac{3}{4} = \frac{y}{x}$ $r^2 = x^2 + y$ $r^2 = (4)^2 + (-3)^2$ $r = 5$	✓ r = 5	
	$r = 5$ $5 \sin \theta + 3 \cot \theta$ $= 5 \left(\frac{-3}{5}\right) + 3 \left(\frac{4}{-3}\right)$ $= -3 - 4 = -7$	$\checkmark \left(\frac{-3}{5}\right)$ $\checkmark \left(\frac{4}{-3}\right)$ $\checkmark -7$ (5)	
2.2	$25\cos^2\theta$ $=25\left(\frac{4}{5}\right)^2$ $=25\left(\frac{16}{25}\right)$	✓substitution	
	$= 23\left(\frac{25}{25}\right)$ $= 16$	✓answer (2)	[7]

QUESTION 3		
$\sin x + 2\cos 3y = \sin(42^\circ) + 2\cos(3 \times 68^\circ) = \sin(42^\circ) + 2\cos 204^\circ$	Do not penalise for rounding off	
=-1,16	✓✓answer (2)	
$3\tan^{2}(x+y)$ $= 3\tan^{2}(42^{\circ} + 68^{\circ})$ $= 3\tan^{2}110^{\circ}$ $= 22,65$	Do not penalise for rounding off	
$2\sin\theta = 1,432$ $\therefore \sin\theta = 0,716$ $\therefore \theta = 45,725^{\circ}$	Do not penalise for rounding off	
$\tan 3\theta = 6.345$ $3\theta = 81.044^{\circ}$ $\theta = 27.015^{\circ}$	✓ tan ⁻¹ ✓ ÷ 3 ✓ answer (3) *penailse once only for	[9]
	$\sin x + 2\cos 3y$ $= \sin(42^{\circ}) + 2\cos(3 \times 68^{\circ})$ $= \sin(42^{\circ}) + 2\cos 204^{\circ}$ $= -1,16$ $3\tan^{2}(x+y)$ $= 3\tan^{2}(42^{\circ} + 68^{\circ})$ $= 3\tan^{2}110^{\circ}$ $= 22,65$ $2\sin\theta = 1,432$ $\therefore \sin\theta = 0,716$ $\therefore \theta = 45,725^{\circ}$ $\tan 3\theta = 6,345$ $3\theta = 81,044^{\circ}$	$\begin{array}{lll} \sin x + 2\cos 3y & & & & & & & & \\ & = \sin(42^\circ) + 2\cos(3\times 68^\circ) & & & & & & \\ & = \sin(42^\circ) + 2\cos 204^\circ & & & & & \\ & = -1,16 & & & & & & \\ & = -1,16 & & & & & & \\ & 3\tan^2(x+y) & & & & & & \\ & = 3\tan^2(42^\circ + 68^\circ) & & & & & \\ & = 3\tan^2(42^\circ + 68^\circ) & & & & & \\ & = 3\tan^2110^\circ & & & & & \\ & = 22,65 & & & & & & \\ & & & \checkmark \text{answer} \\ & & & & & \checkmark \text{answer} \\ & & & & & & \\ & & & & & & \\ & & & & $

Mathematics (P2) Grade 10

	QUESTION 4		
4.2			
	$\sin^{2} 45^{\circ} - \cos 60^{\circ} + \tan 10^{\circ} \cdot \cot 10^{\circ}$ $= \left(\frac{\sqrt{2}}{2}\right)^{2} - \frac{1}{2} + 1$ 1 1 .	$\checkmark \cos 60^\circ = \frac{1}{2}$ $\checkmark \sin^2 45^\circ = \frac{1}{2}$	
	$= \frac{1}{2} - \frac{1}{2} + 1$ $= 1$	✓ $\tan 10^\circ$. $\cot 10^\circ = 1$ ✓ $answer = 1$ (4)	
			[9]

	QUESTION 5			
5.1	$\hat{P}_1 + 30^\circ = 110^\circ$	angle = sum of interior opposite angles)	✓ reason	
	$\hat{P}_1 = 110^{\circ} - 30^{\circ}$ = 80°		✓answer (2))
5.2		s opposite equal sides are equal) um of \angle s of a triangle = 180°)	✓ statement and reason	
		Given: $\hat{R}_2 = 110^{\circ} \text{ and } \hat{P}_2 = \hat{S}_1$)	✓statement and reason	
	$\therefore 2\hat{P}_2 = 70^{\circ}$ $\therefore \hat{P}_2 = 35^{\circ}$		✓ simplification (3))
	$ \begin{array}{c} \mathbf{OR} \\ \hat{P}_2 = \hat{S}_1 \\ \hat{S}_1 \\ \hat{S}_2 \\ \hat{S}_3 \\ \hat{S}_4 \\ \hat{S}_4 \\ \hat{S}_5 \\ \hat{S}_6 \\ \hat{S}_7 \\ \hat{S}_$	s opposite equal sides are equal)	OR ✓ statement and reason	
	$\hat{R}_1 = \hat{P}_2 + \hat{S}_1$ (exterior angle = sum of interior opposite angles) $\therefore \hat{P}_2 = 35^{\circ}$		✓ statement and reason	
	2		✓ simplification (3))
	QUESTION 6			[5]
	In $\triangle ABC$ and $\triangle CDA$		$\checkmark \hat{C}_1 = \hat{A}_2$	
	$\hat{B} = \hat{D}$ (gi	iven)	$\checkmark \hat{C}_1 = \hat{A}_2$	
	AC is common	,	✓Reason	
	$\hat{C}_1 = \hat{A}_2 $ (al)	ternate angles; AD // BC)	(AD // BC)	
	$\therefore \Delta ABC \equiv \Delta CDA \qquad (\angle$	$\angle; \angle; S)$	\checkmark S + R	
	$\therefore AD = BC \qquad (\Delta$	$ABC \equiv \Delta CDA$)	$\checkmark AD = BC$	
	∴ ABCD is a parallelogram	n (one side = //)	✓reason (one side = //)	
	OR		OR	
	In $\triangle ABC$ and $\triangle CDA$		✓ Statement	
	$\hat{B} = \hat{D} $ (gi	iven)		
	AC is common		✓ Reason	
	$\hat{C}_1 = \hat{A}_2 \tag{al}$	ternate angles; AD // BC)	(AD // BC)	
	$\therefore \Delta ABC \equiv \Delta CDA \qquad (\angle$	$\angle; \angle; S)$	\checkmark S + R	
	$\therefore AD = BC \qquad (\Delta$	$ABC \equiv \Delta CDA$)	$\checkmark AD = BC$	
	$\therefore AB = DC \qquad (\Delta$	$ABC \equiv \Delta CDA$)	✓reason (opposite sides =)	
	∴ ABCD is a parallelogram	n (opposite sides =)		

MEMORANDUM	Mathematics (P2) Grade 10
	[5]

	QUESTION 7		
7.1	AO + OC = 4xy (given – diagonals bisect) OC = 2xy	✓ OA = 2 xy	
	BO + OD = $2x^2 - 2y^2$ (given – diagonals bisect) BO = $x^2 - y^2$	$\checkmark BO = x^2 - y^2$	
	If rhombus – diagonals bisect at 90°		
	$LHS = BC^2 RHS = BO^2 + OC^2$	✓ LHS	
	$= (x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + (2xy)^{2}$ $\mathbf{OR} = x^{4} + 2x^{2}y^{2} + y^{4} = x^{4} - 2x^{2}y^{2} + y^{4} + 4x^{2}y^{2}$	√RHS	
	$= x^{4} + 2x^{2}y^{2} + y^{4}$ $\mathbf{OR} = (x^{2} + y^{2})^{2}$	✓ conclusion	
	∴ ΔBOC is a right angled triangle OR Prove ΔAOD as a right angled triangle ∴ Diagonals bisect each other at 90°/right angles ∴ ABCD is a Rhombus	Conclusion	
7.2	$\hat{R}_1 = 120^{\circ}$ (opposite angles of a //m)	$\checkmark \hat{R}_1 = 120^{\circ}$	
7.2	$\hat{R}_1 = 120^{\circ}$ (opposite angles of a //m) $\hat{R}_2 = 60^{\circ}$ (angles on a straight line) $\hat{T} = 60^{\circ}$ (angles opposite equal sides) $\hat{S} = 60^{\circ}$ (sum of angles of a triangle) $\therefore 4x = 60^{\circ}$	$ \begin{array}{l} \checkmark \hat{T} = 60^{\circ} \\ \checkmark \hat{S} = 60^{\circ} \\ \checkmark x = 15^{\circ} \end{array} $	
	$x = 15^{\circ}$	(4)	
			[9]

TOTAL: 50